- Installation
- Documentation
- Getting Started
- Connect
- Data Import and Export
- Overview
- Data Sources
- CSV Files
- JSON Files
- Overview
- Creating JSON
- Loading JSON
- Writing JSON
- JSON Type
- JSON Functions
- Format Settings
- Installing and Loading
- SQL to / from JSON
- Caveats
- Multiple Files
- Parquet Files
- Partitioning
- Appender
- INSERT Statements
- Lakehouse Formats
- Client APIs
- Overview
- Tertiary Clients
- ADBC
- C
- Overview
- Startup
- Configuration
- Query
- Data Chunks
- Vectors
- Values
- Types
- Prepared Statements
- Appender
- Table Functions
- Replacement Scans
- API Reference
- C++
- CLI
- Overview
- Arguments
- Dot Commands
- Output Formats
- Editing
- Safe Mode
- Autocomplete
- Syntax Highlighting
- Known Issues
- Dart
- Go
- Java (JDBC)
- Julia
- Node.js (Deprecated)
- Node.js (Neo)
- ODBC
- PHP
- Python
- Overview
- Data Ingestion
- Conversion between DuckDB and Python
- DB API
- Relational API
- Function API
- Types API
- Expression API
- Spark API
- API Reference
- Known Python Issues
- R
- Rust
- Swift
- Wasm
- SQL
- Introduction
- Statements
- Overview
- ANALYZE
- ALTER TABLE
- ALTER VIEW
- ATTACH and DETACH
- CALL
- CHECKPOINT
- COMMENT ON
- COPY
- CREATE INDEX
- CREATE MACRO
- CREATE SCHEMA
- CREATE SECRET
- CREATE SEQUENCE
- CREATE TABLE
- CREATE VIEW
- CREATE TYPE
- DELETE
- DESCRIBE
- DROP
- EXPORT and IMPORT DATABASE
- INSERT
- LOAD / INSTALL
- MERGE INTO
- PIVOT
- Profiling
- SELECT
- SET / RESET
- SET VARIABLE
- SHOW and SHOW DATABASES
- SUMMARIZE
- Transaction Management
- UNPIVOT
- UPDATE
- USE
- VACUUM
- Query Syntax
- SELECT
- FROM and JOIN
- WHERE
- GROUP BY
- GROUPING SETS
- HAVING
- ORDER BY
- LIMIT and OFFSET
- SAMPLE
- Unnesting
- WITH
- WINDOW
- QUALIFY
- VALUES
- FILTER
- Set Operations
- Prepared Statements
- Data Types
- Overview
- Array
- Bitstring
- Blob
- Boolean
- Date
- Enum
- Interval
- List
- Literal Types
- Map
- NULL Values
- Numeric
- Struct
- Text
- Time
- Timestamp
- Time Zones
- Union
- Typecasting
- Expressions
- Overview
- CASE Expression
- Casting
- Collations
- Comparisons
- IN Operator
- Logical Operators
- Star Expression
- Subqueries
- TRY
- Functions
- Overview
- Aggregate Functions
- Array Functions
- Bitstring Functions
- Blob Functions
- Date Format Functions
- Date Functions
- Date Part Functions
- Enum Functions
- Interval Functions
- Lambda Functions
- List Functions
- Map Functions
- Nested Functions
- Numeric Functions
- Pattern Matching
- Regular Expressions
- Struct Functions
- Text Functions
- Time Functions
- Timestamp Functions
- Timestamp with Time Zone Functions
- Union Functions
- Utility Functions
- Window Functions
- Constraints
- Indexes
- Meta Queries
- DuckDB's SQL Dialect
- Overview
- Indexing
- Friendly SQL
- Keywords and Identifiers
- Order Preservation
- PostgreSQL Compatibility
- SQL Quirks
- Samples
- Configuration
- Extensions
- Overview
- Installing Extensions
- Advanced Installation Methods
- Distributing Extensions
- Versioning of Extensions
- Troubleshooting of Extensions
- Core Extensions
- Overview
- AutoComplete
- Avro
- AWS
- Azure
- Delta
- DuckLake
- Encodings
- Excel
- Full Text Search
- httpfs (HTTP and S3)
- Iceberg
- Overview
- Iceberg REST Catalogs
- Amazon S3 Tables
- Amazon SageMaker Lakehouse (AWS Glue)
- Troubleshooting
- ICU
- inet
- jemalloc
- MySQL
- PostgreSQL
- Spatial
- SQLite
- TPC-DS
- TPC-H
- UI
- Vortex
- VSS
- Guides
- Overview
- Data Viewers
- Database Integration
- File Formats
- Overview
- CSV Import
- CSV Export
- Directly Reading Files
- Excel Import
- Excel Export
- JSON Import
- JSON Export
- Parquet Import
- Parquet Export
- Querying Parquet Files
- File Access with the file: Protocol
- Network and Cloud Storage
- Overview
- HTTP Parquet Import
- S3 Parquet Import
- S3 Parquet Export
- S3 Iceberg Import
- S3 Express One
- GCS Import
- Cloudflare R2 Import
- DuckDB over HTTPS / S3
- Fastly Object Storage Import
- Meta Queries
- Describe Table
- EXPLAIN: Inspect Query Plans
- EXPLAIN ANALYZE: Profile Queries
- List Tables
- Summarize
- DuckDB Environment
- ODBC
- Performance
- Overview
- Environment
- Import
- Schema
- Indexing
- Join Operations
- File Formats
- How to Tune Workloads
- My Workload Is Slow
- Benchmarks
- Working with Huge Databases
- Python
- Installation
- Executing SQL
- Jupyter Notebooks
- marimo Notebooks
- SQL on Pandas
- Import from Pandas
- Export to Pandas
- Import from Numpy
- Export to Numpy
- SQL on Arrow
- Import from Arrow
- Export to Arrow
- Relational API on Pandas
- Multiple Python Threads
- Integration with Ibis
- Integration with Polars
- Using fsspec Filesystems
- SQL Editors
- SQL Features
- AsOf Join
- Full-Text Search
- Graph Queries
- query and query_table Functions
- Merge Statement for SCD Type 2
- Timestamp Issues
- Snippets
- Creating Synthetic Data
- Dutch Railway Datasets
- Sharing Macros
- Analyzing a Git Repository
- Importing Duckbox Tables
- Copying an In-Memory Database to a File
- Troubleshooting
- Glossary of Terms
- Browsing Offline
- Operations Manual
- Overview
- DuckDB's Footprint
- Installing DuckDB
- Logging
- Securing DuckDB
- Non-Deterministic Behavior
- Limits
- DuckDB Docker Container
- Development
- DuckDB Repositories
- Release Cycle
- Profiling
- Building DuckDB
- Overview
- Build Configuration
- Building Extensions
- Android
- Linux
- macOS
- Raspberry Pi
- Windows
- Python
- R
- Troubleshooting
- Unofficial and Unsupported Platforms
- Benchmark Suite
- Testing
- Internals
- Sitemap
- Live Demo
DuckDB allows directly reading files via the read_text and read_blob functions.
These functions accept a filename, a list of filenames, or a glob pattern. They output the content of each file as a VARCHAR or BLOB, respectively, along with metadata such as the file size and last modified time.
read_text
The read_text table function reads from the selected source(s) to a VARCHAR. Each file results in a single row with the content field holding the entire content of the respective file.
SELECT size, parse_path(filename), content
FROM read_text('test/sql/table_function/files/*.txt');
| size | parse_path(filename) | content |
|---|---|---|
| 12 | [test, sql, table_function, files, one.txt] | Hello World! |
| 2 | [test, sql, table_function, files, three.txt] | 42 |
| 10 | [test, sql, table_function, files, two.txt] | Foo Bar\nFöö Bär |
DuckDB first validates the file content as valid UTF-8. If read_text attempts to read a file with invalid UTF-8, DuckDB throws an error suggesting to use read_blob instead.
read_blob
The read_blob table function reads from the selected source(s) to a BLOB:
SELECT size, content, filename
FROM read_blob('test/sql/table_function/files/*');
| size | content | filename |
|---|---|---|
| 178 | PK\x03\x04\x0A\x00\x00\x00\x00\x00\xACi=X\x14t\xCE\xC7\x0A… | test/sql/table_function/files/four.blob |
| 12 | Hello World! | test/sql/table_function/files/one.txt |
| 2 | 42 | test/sql/table_function/files/three.txt |
| 10 | F\xC3\xB6\xC3\xB6 B\xC3\xA4r | test/sql/table_function/files/two.txt |
Schema
The schemas of the tables returned by read_text and read_blob are identical:
DESCRIBE FROM read_text('README.md');
| column_name | column_type | null | key | default | extra |
|---|---|---|---|---|---|
| filename | VARCHAR | YES | NULL | NULL | NULL |
| content | VARCHAR | YES | NULL | NULL | NULL |
| size | BIGINT | YES | NULL | NULL | NULL |
| last_modified | TIMESTAMP | YES | NULL | NULL | NULL |
Hive Partitioning
Data can be read from Hive partitioned datasets.
SELECT *
FROM read_blob('data/parquet-testing/hive-partitioning/simple/**/*.parquet')
WHERE part IN ('a', 'b') AND date >= '2012-01-01';
| filename | content | size | last_modified | date | part |
|---|---|---|---|---|---|
| …/part=a/date=2012-01-01/test.parquet | PAR1\x15\x00\x15\x14\x15\x18… | 266 | 2024-11-12 02:23:20+00 | 2012-01-01 | a |
| …/part=b/date=2013-01-01/test.parquet | PAR1\x15\x00\x15\x14\x15\x18… | 266 | 2024-11-12 02:23:20+00 | 2013-01-01 | b |
Handling Missing Metadata
When the underlying filesystem cannot provide this data (e.g., HTTPFS may not always return a valid timestamp), the cell is set to NULL instead.
Support for Projection Pushdown
These table functions also use projection pushdown to avoid computing properties unnecessarily. For example, you can glob a directory of large files to get file sizes in the size column. As long as you omit the content column, DuckDB won't read the file data.